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Respiratory monitoring carries vital information about the breathing functionality and��a㬀
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biomonitoring. 

2. Experimental section 

2.1 Materials 

The Multi-walled carbon nanotube DMF dispersion (1.5 wt%) was purchased from Chengdu Organic 

Chemistry Co., Ltd. (China). The PAN (25014-41-9) was purchased from Wuhan Kermit Biomedical 

Technology Co., Ltd. (China). N, N- dimethylformamide (DMF), acetone, and nanosilver conductive ink 

(N196405) were purchased from Aladdin (Shanghai, China). Mechanical anemometer and hairdryer 

purchased from BOE. All the chemicals were used as received without further purification. 
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Figure 2. Characterisation of PCMs. (a) Scanning electron microscope (SEM) image of PAN spun 

membrane with an electrostatic spinning rate of 5 μL/min. (b-d) SEM image of PCMs synthesized with an 

electrostatic spinning rate of 5 μL/min and an electrostatic spraying rate of 2 μL/min (b), 4 μL/min (c), 6 

μL/min (d). (e) Cross-section of PCM in (d). (f) Elemental carbon and nitrogen scans were performed on 

PCMs prepared at electrostatic spraying rates of 0, 2, 4 and 6 µl/min. (g) Mass ratios of carbon to nitrogen 

for PCMs produced at electrostatic spray rates of 0, 2, 4 and 6 µl/min. (h) EDS mapping of PCMs fabricated 

with an electrostatic spraying rate of 0, 2, 4 and 6 µL/min. (i) FTIR of PCMs fabricated with an electrostatic 

spraying rate of 0, 2, 4 and 6 µL/min. 

3.3 Sensing mechanism 
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µL/min demonstrate superior sensitivity in comparison with other versions (Fig. 3h). This is because that 

the sparse CNTs cannot build up compact piezoresistive conducting network (Fig. 2b) while the excessive 

CNTs screen the relative resistance change under a constant applied force (Figs. 2d and e). To ensure the 

optimal sensing performance, the following measurement was conducted using the sensor based with an 

electrostatic spraying rate of 4 µL/min. 

Figure 3i and Figure s2 shows the dependence of sensing response of PCM-based devices on the width-
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device to rapid expiration. (i) Real-time response of the device to deep exhalation. 

Figure 4a elucidates the dynamic response of PCM enabled respiratory sensor under impact of exhaled gas 

flow, where a response time of 193 ms and recovery time of 104 ms was observed, respectively. The rapid 

response behaviors assure the device to discriminate the real-time breathing characteristics even under rapid 

respiratory pattern (Fig. 4a). A linear relationship between output current and airflow velocity corroborates 

the great capability in distinguishing the respiratory traits (Fig. 4b). Moreover, unnoticeable attenuation and 

distortion of output signals were detected after 600 cycles of loading and unloading of 5 m/s breathing flow, 

implying the durability and reliability (Fig. 4c). To verify the competence for respiratory monitoring, the 

PCM based sensor was mounted on a wearable mask to capture the real-time output signal profiles for deep, 

normal, shallow breathing patterns (Fig. 4d). Note that the respiratory rate and depth can be respectively 

associated with interval and peak-to-peak intensity of signal waveforms. Evidently, a deep breathing pattern 

contributes to a larger interval and huger peak-to-peak intensity. As a consequence, the as-prepared PCM 

based sensor can not only discern breathing rhythms such as normal breathing, deep breathing, kussmaul 

breathing, pause in breathing, etc., but also identify respiratory dynamics under physiological training (Figs. 

4e and 4f) [66-68]. Figures 4g-i display the real-time waveforms towards slow expiration, rapid expiration 

and deep exhalation. Among these three different simulated respiratory patterns, the intensity and interval 

of the signal varies distinctly with other versions, confirming capability in discriminating respiratory 

characteristic.  

3.5 Machine learning and applications 
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Figure 5. Application of the device based on machine learning. (a) Flowchart of machine learning. (b) 

Classification of respiratory characteristics and possible causes of these respiratory characteristics. (c) 

Cough monitoring (per minute). (d) Speaking monitoring (per minute). (e) Irregular breathing while 

running (per minute). (f) Regular breathing while running (per minute). 

Failure in perceiving respiratory abnormalities gives rise to complications like diabetes mellitus, 

hyperglycaemia, cardiovascular disease and retinopathy. To boost the accuracy and fidelity in identifying 

respiratory 
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